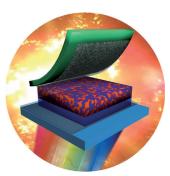

Quality through diversity ...



... has been a hallmark of *Angewandte Chemie* from the beginning, and this is no doubt also the case in the 125th year. This jubilee will be celebrated by a symposium on March 12, 2013 in Berlin, and the program is part of the current issue. The diversity of topics that appear in *Angewandte Chemie* is illustrated by the tag cloud in the cover picture. The diversity of countries from which manuscripts come is shown by the top-ten list of countries of the Communications accepted in 2012, which is represented by the size of the spheres in the cover picture. The various sections are also diverse: Reviews and Communications, Highlights and Essays, Author Profiles and News, Obituaries and occasionally Correspondences. The history of *Angewandte Chemie* is presented in this Issue by the Chairman of the Editorial Board, François Diederich, in a major Review (pp. 2714 ff.), which brings to life the development of the journal and indeed of chemistry since 1888.

Stamping Nanotechnology

In their Communication on page 2874 ff., A. J. Heeger et al. show how to insert electron-transport layers of transferable graphene oxide into bulk-heterojunction solar cells for enhanced power-conversion efficiency.

Carbon Nanomaterials

Ultralight, flexible, and fire-resistant carbon nanofiber aerogels, which can be fabricated in large scale by using bacterial cellulose as a precursor, are described by S. H. Yu and co-workers in their Communication on page 2925 ff.

How to contact us:

Editorial Office:

E-mail: angewandte@wiley-vch.de
Fax: (+49) 62 01-606-331
Telephone: (+49) 62 01-606-315

Reprints, E-Prints, Posters, Calendars:

Carmen Leitner

E-mail: chem-reprints@wiley-vch.de
Fax: (+49) 62 01–606-331
Telephone: (+49) 62 01–606-327

Copyright Permission:

Bettina Loycke

E-mail: rights-and-licences@wiley-vch.de

Fax: (+49) 62 01–606-332 Telephone: (+49) 62 01–606-280

Online Open:

Margitta Schmitt, Carmen Leitner

E-mail: angewandte@wiley-vch.de

Fax: (+49) 62 01–606-331

Telephone: (+49) 62 01–606-315

Subscriptions:

www.wileycustomerhelp.com Fax: (+49) 62 01–606-184

Telephone: 0800 1800536 (Germany only) +44(0) 1865476721 (all other countries)

Advertising:

Marion Schulz

E-mail: mschulz@wiley-vch.de

jspiess@wiley-vch.de

Fax: (+49) 62 01–606-550 Telephone: (+49) 62 01–606-565

Courier Services:

Boschstrasse 12, 69469 Weinheim

Regular Mail:

Postfach 101161, 69451 Weinheim

Angewandte Chemie International Edition is a journal of the Gesellschaft Deutscher Chemiker (GDCh), the largest chemistry-related scientific society in continental Europe. Information on the various activities and services of the GDCh, for example, cheaper subscription to Angewandte Chemie International Edition, as well as applications for membership can be found at www.gdch.de or can be requested from GDCh, Postfach 900440, D-60444 Frankfurt am Main, Germany.

GESELLSCHAFT
DEUTSCHER CHEMIKER

Get the Angewandte App

Enjoy Easy Browsing and a New Reading Experience on the iPad

- Keep up to date with the latest articles in Early View.
- Download new weekly issues automatically when they are published.
- Read new or favorite articles anytime, anywhere.

In this issue, many articles are accompanied by a special symbol:

The articles marked with this symbol are by speakers at the Anniversary Symposium celebrating 125 years of *Angewandte Chemie*.

"...Angewandte Chemie is probably the only scientific journal of such standing that not only comes from Germany, but even has a German title, and has established itself on the international stage ..."

Read more in the Editorial by Wolfram Koch.

Editorial

W. Koch* ______ 2614

Made in Germany: 125 Years of Angewandte Chemie

"... What has so far been largely missing in bottom-up synthetic biology, however, is the power of true chemical synthesis ..."

Read more in the Editorial by Petra Schwille.

P. Schwille* _____ 2616-2617

Chemistry Needed: Synthetic Biology as a New Incentive for Interdisciplinarity

Miscellaneous

Spotlight on Angewandte's Sister Journals

Editorial Board and International Advisory Board of **Angewandte Chemie**

page 2646.

2640 – 2642

2644 - 2645

"If I won the lottery, I would buy a Steinway for me and a house for my Steinway. My favorite place on earth is Paris ..." This and more about Paul Knochel can be found on **Author Profile**

Paul Knochel ______ 2646 – 2647

News

B. List

M. Christmann

E. E. Wille

M. Beller

N. Maulide

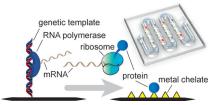
Horst Pracejus Prize: B. List	2648
Carl Duisberg Memorial Prize: M. Christmann	2648
Carl Duisberg Plaque: E. E. Wille _	2648
Honorary Professorship: R. Schlögl	2648
Gottfried Wilhelm Leibniz Prize: F. Glorius	2648
Karl Ziegler Guest Professorship: M. Beller	2648
Bayer Early Excellence in Science Av N. Maulide	

Books

Catalysis

Matthias Beller, Albert Renken, Rutger A. van Santen

reviewed by F. E. Kühn _____ 2650


Highlights

On-Chip Biosynthesis

C. Timm, C. M. Niemeyer* _ 2652 - 2654

F. Glorius

On-Chip Protein Biosynthesis

Spot on! Cell-free protein expression on surfaces can be implemented in biosensors and in microfluidic devices like that shown in the picture. Proteins are generated and immobilized successively on separated spots in a microfluidic reactor. This approach opens up novel opportunities for basic and applied biomedical research.

For the USA and Canada:

ANGEWANDTE CHEMIE International Edition (ISSN 1433-7851) is published weekly by Wiley-VCH, PO Box 191161, 69451 Weinheim, Germany. Air freight and mailing in the USA by Publications Expediting Inc., 200 Meacham Ave., Elmont, NY 11003. Periodicals postage paid at Jamaica, NY 11431. US POST-MASTER: send address changes to Angewandte Chemie, Journal Customer Services, John Wiley & Sons Inc., 350 Main St., Malden, MA 02148-5020. Annual subscription price for institutions: US\$ 11.738/10.206 (valid for print and electronic / print or electronic delivery); for

individuals who are personal members of a national chemical society prices are available on request. Postage and handling charges included. All prices are subject to local VAT/ sales tax.

Fundamental aspects of chemically activated reactive intermediates can possibly be learned from the novel generation of arynes. The intramolecular [4+2] cycloaddition between a diyne and an (electronically activated) alkyne also provides a new route to generate arynes (see scheme).

Reactive Intermediates

R. W. Hoffmann,* K. Suzuki 2655 - 2656

A "Hot, Energized" Benzyne

Additive or non-additive, that is the question: The increasing awareness of nonadditive cooperative mutational effects in protein engineering is currently providing new theoretical and practical insights. In particular, the directed evolution of stereoselective enzymes as catalysts in organic chemistry and biotechnology profits from this intriguing development.

Essays

M. T. Reetz*

The Importance of Additive and Non-Additive Mutational Effects in Protein Engineering

Open Compound Program

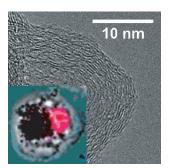
Explore potential therapeutic utility of your compounds

Merck Serono reaches out to you as part of our continual search for tomorrow's therapeutic innovations. Through our Open Compound Program, we invite potential partners to submit their compounds to be included in our high throughput screening library and utilized in efforts to identify new therapeutics. We offer attractive conditions and success participation.

For further details, send inquiry to: open.innovation@merckserono.net www.merckserono.com/open_innovation

Unpredictability of Science

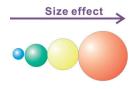
E. Keinan* ______ 2667 – 2672

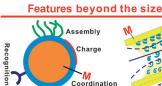

Gloomy Forecast for the Prophets of Apocalypse and Bright Forecast for Chemists The human population, doubling every 50 years, creates global problems, including limitations on energy, raw materials, food, water, health, and air. However, the future of humankind seems bright thanks to the even faster growth of human knowledge,

doubling every 18 months, and the unpredictability of science. Our global challenges are likely to be met by yet unknown technologies, mostly invented by chemists.

Exhaust Emission

B. Frank, M. E. Schuster, R. Schlögl,
 D. S. Su* _______ 2673 – 2677


Emission of Highly Activated Soot Particulate—The Other Side of the Coin with Modern Diesel Engines Soot toxification: The increasing chemical activity of the emitted soot particulate produced by modern diesel engines is an unwanted side effect of modification of the motors. This makes Euro IV and VI soots chemically and biologically highly active and hazardous. Taking these factors into consideration, the question arises whether the reduced net mass of diesel soot particulate emitted overcompensates for the induced micro- and nanostructure.


Nanoscience

C. Bai,* M. Liu _____ 2678 - 2683

From Chemistry to Nanoscience: Not Just a Matter of Size

Chemical synthesis

Chemistry at the nanoscale

surface modifications and structures.

Nanomaterials thus have unique properties and can contribute to the development of chemistry, including nanocata-

lysts and nanomedicine.

Size matters: Chemistry has contributed strongly to the rapid development of nanoscience resulting in an ever-growing amount of nanosized systems and materials. The properties of these systems do not only arise from their size, but also

Drug Development

H. Wild,* C. Huwe, M. Lessl 2684 - 2687

"Collaborative Innovation"—Regaining the Edge in Drug Discovery

Sharers are winners: The concept of "Collaborative Innovation" has the potential to overcome the significant challenges the pharmaceutical industry faces in its effort to improve the lives of patients by fighting increasingly complex diseases. In order to succeed, it is crucial

to join forces on a global level and to combine different approaches in a flexible way, requiring the right mindset of all involved parties, a combination of internal excellence and external openness, and the right organizational setup.

Supporting Education

Promoting Talent

150 Years
Science For A Better Life

Where do birds fly in winter? Why does water turn to ice? Why does my heart beat? Nothing is as exciting as science when you experience it first hand. That is exactly what the "Making Science Make Sense" program in the USA and further countries is all about. One of many Bayer initiatives aimed at improving educational opportunities for young people.

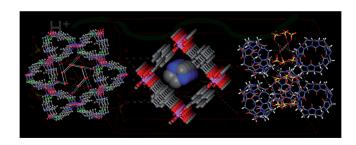
In Germany, for example, Bayer supports the "Jugend forscht" (Youth Research) competition, providing resources such as class materials and laboratory equipment. The competition stimulates interest in science, providing an effective way of spotting and supporting the budding scientific talents of the future. www.bayer.com

BAYER E R

Bayer: HealthCare

CropScience

MaterialScience



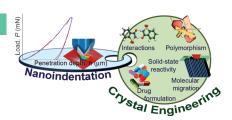
Minireviews

Proton-Conducting Materials

M. Yoon, K. Suh, S. Natarajan,*
K. Kim* ______ 2688 - 2700

Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids

Pores and protons: Development of new types of proton-conducting materials is important in fuel-cell technology. Newly developed proton-conducting materials formed from modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs) are discussed (see scheme).


Crystal Engineering

S. Varughese, M. S. R. N. Kiran,

U. Ramamurty,*

G. R. Desiraju* ______ 2701 - 2712

Nanoindentation in Crystal Engineering: Quantifying Mechanical Properties of Molecular Crystals

Poking crystals: The application of nanoindentation in crystal engineering provides an important breakthrough in establishing links between microscopic structures and macroscopic properties. This Minireview highlights some of the advantages of this technique for studying the mechanical behavior of organic crystals.

Reviews

History of Chemistry

F. Diederich* _____ 2714 – 2742

125 Years of Chemistry in the Mirror of "Angewandte"

The development of Angewandte Chemie and the changes in chemical research over the first 125 years of its existence are the topic of this Review. Even from the content of its first 50 years, the journal offers numerous milestones in chemical research, and today, with its attractive layout and successful mix of articles, it covers chemical research worldwide in its full breadth.

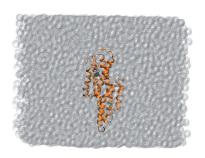
How to solve the riddle? When phenotypic screens are performed, mostly there are missing pieces (of information) that would explain the link between a biologically active compound and the appearance of a certain phenotype. The interplay of organic synthesis, cell biology, proteomics, genetics, molecular biology, biochemistry, informatics, and biophysics is required to find the missing pieces and to assemble the whole puzzle of a compound's cellular activity.

BIOS privileged scaffolds DOS library phenotypic screen hit compound small molecules target probe synthesis SAR biotin-streptavidin linher pull down affinity chromatography trifunctional probes chemical proteomics SILAC ITRAQ ICAT mass spectrometry identification competition ccms DARTS ligand-directed protein labeling in silico profile comparison compound signatures connectivity map hypothesis protein microarrays HIP HOP three-hybrid system MSP MSPOR FLIM gene overexpression confirmation

Drug Discovery

S. Ziegler,* V. Pries, C. Hedberg,*
H. Waldmann* ______ 2744 – 2792

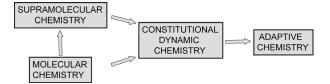
Target Identification for Small Bioactive Molecules: Finding the Needle in the Haystack


Making connections: The latest generation of alkyne metathesis catalysts holds considerable promise for synthesis, as they are exceptionally active, remarkably tolerant, and, in the form of their phenanthroline adducts, bench stable (see scheme). Numerous applications to material science and natural product synthesis illustrate the excellent performance and structural scope of this method.

Catalysis for Synthesis

A. Fürstner* ______ 2794 – 2819

Alkyne Metathesis on the Rise


Various levels of resolution, for example, electronic, atomic, supramolecular, are combined in one model in multi-resolution simulations. The basic choices when setting up a multi-resolution model are reviewed. As an illustration the differential catalytic properties of two enzymes with similar folds are explored using multi-resolution simulation at three different levels of resolution.

Computational Chemistry

K. Meier, A. Choutko, J. Dolenc,A. P. Eichenberger, S. Riniker,W. F. van Gunsteren* _______ 2820 – 2834

Multi-Resolution Simulation of Biomolecular Systems: A Review of Methodological Issues

Chemistry is key for understanding the fundamental processes that underlie the evolution of matter towards states of increasing complexity through self-organization. It has developed from the molec-

ular to the supramolecular level and has, through constitution dynamic systems, acquired the features of adaptive chemistry. Hence, chemistry opens the door towards complex matter.

Towards Complex Matter

J.-M. Lehn* _____ 2836 - 2850

Perspectives in Chemistry—Steps towards Complex Matter

Homogeneous Hydroformylation

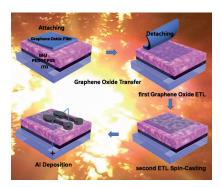
J. Pospech, I. Fleischer, R. Franke,*
S. Buchholz, M. Beller* _____ 2852-2872

Alternative Metals for Homogeneous Catalyzed Hydroformylation Reactions

New possibilities: There is a growing awareness that organometallic complexes based on ruthenium, iridium, palladium, and even iron as the central metal offer new opportunities for catalytic hydrofor-

mylations (see scheme; TM = transition metal). Research from the past few decades is critically summarized in this Review.

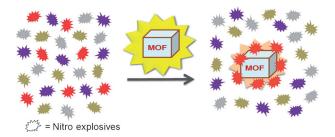
Communications


Organic Electronics

D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park,

A. J. Heeger* _____ 2874-2880

Transferable Graphene Oxide by Stamping Nanotechnology: Electron-Transport Layer for Efficient Bulk-Heterojunction Solar Cells Layer by layer: Electron-transport layers (ETLs) of transferable graphene oxide (GO) inserted by using a stamping nanotechnology (see picture) result in bulkheterojunction (BHJ) solar cells with enhanced power conversion efficiency because of enhanced electron-charge transport and reduced electronic charge barrier with low series resistance. The GO ETL also increases the stability of the device in air.


Frontispiece

Metal-Organic Frameworks

S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, S. K. Ghosh* 2881 – 2885

Highly Selective Detection of Nitro Explosives by a Luminescent Metal– Organic Framework

TNP can't hide from MOF: A three-dimensional fluorescent metal—organic framework (MOF), $[Cd(NDC)_{0.5}(PCA)]\cdot G_x$, can be used for the detection of 2,4,6-trinitrophenol (TNP). The MOF exhibits

high selectivity towards TNP, even in the presence of other nitro explosives in aqueous and organic solutions, owing to electron- and energy-transfer mechanisms and electrostatic interactions.

Nanoparticle Separation

M. R. Jones, C. A. Mirkin* _ 2886-2891

Bypassing the Limitations of Classical Chemical Purification with DNA-Programmable Nanoparticle Recrystallization

1)

And then there was one: Anisotropic nanoparticle syntheses often contain impurity nanostructures. Functionalization of the products of such syntheses with DNA (see scheme (1)) allows the relative interaction strengths between

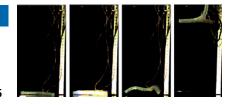
particles to be tailored. The desired nanoparticle component can then be crystallized selectively (2) and separated to arrive at samples of significantly improved purity (3).

Our research benefits your health. That's why we're investigating disease.

Combating serious diseases such as cancer is our speciality.

Our innovations help millions of people by alleviating their suffering and improving their quality of life. We give them hope.

We Innovate Healthcare

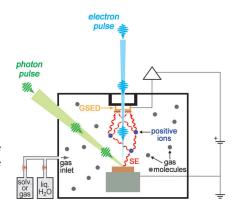

Soft Robots

R. F. Shepherd, A. A. Stokes, J. Freake, J. Barber, P. W. Snyder, A. D. Mazzeo, L. Cademartiri, S. A. Morin,

G. M. Whitesides* _____ 2892 - 2896

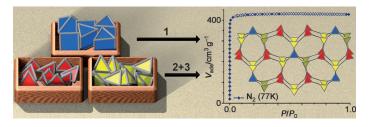
Using Explosions to Power a Soft Robot

Combustion causes a soft robot to jump:


Rapid actuation of a soft robot (composed of silicone elastomers) was achieved using high-temperature chemical reactions. Computer-controlled electrical sparks triggered the combustion of premixed CH_4 and O_2 gases inside the robot, which pressurized the pneumatic channels of the robot and caused it to jump (see figure). The heat from the explosions dissipated quickly and did not damage the robot even over many jumps.

Ultrafast Electron Microscopy

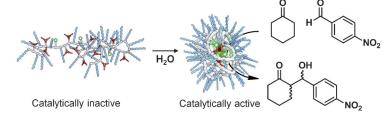
D.-S. Yang, O. F. Mohammed,
A. H. Zewail* ______ 2897 – 2901


Environmental Scanning Ultrafast Electron Microscopy: Structural Dynamics of Solvation at Interfaces On the surface: CdSe surfaces have been used as a prototype for the investigation of the spatiotemporal characteristics of solvation by environmental scanning ultrafast electron microscopy (see picture, GSED = gaseous secondary electron detector). This study has shown that the ultrafast relaxation dynamics of polar molecules, such as water, in the adsorbate layers exhibit a striking dependence on the CdSe surface structure.

Metal-Organic Materials

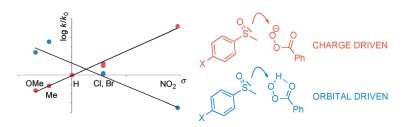
The asc Trinodal Platform: Two-Step Assembly of Triangular, Tetrahedral, and Trigonal-Prismatic Molecular Building Blocks

The self-assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks affords the first example of a trinodal family of metal-organic materials. Four examples of isoreticular


expanded and functionalized frameworks are detailed. Gas adsorption experiments validated the permanent porosity of the parent structure.

Supramolecular Chemistry

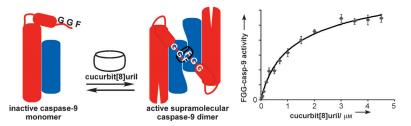
E. Huerta, P. J. M. Stals, E. W. Meijer,*
A. R. A. Palmans* ______ 2906 – 2910


Consequences of Folding a Water-Soluble Polymer Around an Organocatalyst

Give 'em structure: The presence of structuring elements in polymers that were functionalized with catalytic units resulted in a new class of enzyme mimics, which are only active in the folded state

(see picture). The conformationally adaptive hydrophobic environment that surrounds the catalytic site allows the very efficient catalysis of an aldol reaction in water with Michaelis–Menten kinetics.

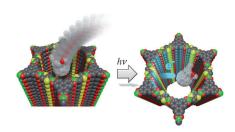
Too OT to handle? In oxygen transfer (OT) reactions the inversion of the ρ value is not representative of a change in mechanism. Substituents bonded to aromatic


sulfoxides have the opposite effect on the rates of oxidation depending on whether the reaction is dominated by electrostatic or orbital-overlap effects (see picture).

Nucleophilic Substitution

G. Licini, C. Zonta* _____ 2911 - 2914

Revisiting the Hammett ρ Parameter for the Determination of Philicity: Nucleophilic Substitution with Inverse Charge Interaction


At the double: Cucurbit[8]uril-mediated protein dimerization enables reversible control over strong enzyme activation of caspases. Simple addition of a short N-

terminal FGG motif allows for a supramolecular-mediated 50-fold enhancement of caspase-9 catalytic activity.

Host-Guest Chemistry

Supramolecular Control of Enzyme Activity through Cucurbit[8]uril-Mediated Dimerization

Filling a honeycomb: The thienothio-phene-based covalent organic framework (COF) can be loaded with a complementary semiconductor, such as a fullerene derivative, and electronic interactions are observed (see figure). The novel periodic interpenetrated donor—acceptor system shows the spectroscopic signatures of efficient charge transfer on the nanoscale. Photovoltaic activity was demonstrated upon integrating the COF:fullerene film into a device.

Energy Transfer

M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh,

P. Knochel,* T. Bein* _____ 2920 – 2924

A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene

Thirsty fibers: The aerogels described in the title can be fabricated in large scale by using a low-cost biomass, bacterial cellulose, as a precursor, which can be produced at industrial level in a microbial

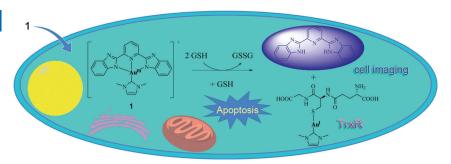
fermentation process. The carbon nanofiber aerogels (black pieces in picture) exhibit superior absorption capacity for organic solvents (red solution) and high potential for pressure sensing.

Carbon Nanomaterials

Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, S. H. Yu* ______ **2925 – 2929**

Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose

Inside Back Cover



In Vivo Gold Chemistry

T. Zou, C. T. Lum, S. S.-Y. Chui, C.-M. Che* ______ 2930 – 2933

Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands: Thiol "Switch-on" Fluorescent Probes and Anti-Cancer Agents

Illuminating results: Activation of nonemissive [Au^{III}(N^N^N)(NHC)]⁺ complexes (such as 1) through reduction by intracellular glutathione gives active Au^I– NHC complexes, which show promising anti-cancer properties, accompanied by release of the highly fluorescent ligand. The high fluorescence "switch-on" efficiency makes these Au^{III} complexes excellent probes for cellular thiol detection.

Asymmetric Catalysis

Z.-L. He, H.-L. Teng, C.-J. Wang* ______ **2934 – 2938**

Fulvenes as Effective Dipolarophiles in Copper(I)-Catalyzed [6+3] Cycloaddition of Azomethine Ylides: Asymmetric Construction of Piperidine Derivatives

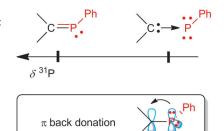
As easy as π : Fulvenes serve as 6π dipolarophiles in the title reaction in the presence of the chiral Cu^I/(S)-L complex. The present system provides a unique and straightforward access to enantioen-

riched, highly functionalized piperidine derivatives in good yields and excellent diastereoselectivities and enantioselectivities

NHPPh

(S)-L

Stable Carbenes


O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin, G. Bertrand* ____ 2939 - 2943

 31 P NMR Chemical Shifts of Carbene– Phosphinidene Adducts as an Indicator of the π -Accepting Properties of Carbenes

Beyond the Tolman electronic parameter:

The ^{31}P NMR chemical shifts of easily synthesized carbene–phenylphosphinidene adducts allow the determination of the relative π -acceptor properties of carbenes. In combination with the Tolman electronic parameter value, the relative pure σ -donation of carbenes can also be evaluated.

Synthetic Methods

B. Morandi, Z. K. Wickens, R. H. Grubbs* ________ **2944 – 2948**

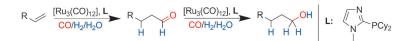
Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Appli-

cations to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

Evonik is Germany's creative plastics specialist. We'll surprise you with solutions before you even noticed there's a problem – from sandwich constructions for lightweight components, through PLEXIGLAS® for sophisticated design solutions all the way to high-performance polymers. We look forward to giving your business fresh energy with our innovations.

Evonik. Power to create.



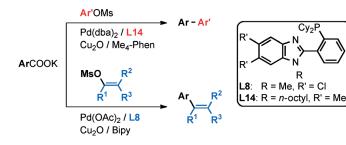
Carbonylation

I. Fleischer, K. M. Dyballa, R. Jennerjahn, R. Jackstell, R. Franke, A. Spannenberg, M. Beller* ________ 2949 – 2953

From Olefins to Alcohols: Efficient and Regioselective Ruthenium-Catalyzed Domino Hydroformylation/Reduction Sequence

Exploring the alternatives: Ruthenium imidazoyl phosphine complexes catalyze the domino hydroformylation/reduction of alkenes to alcohols in good yields and

with good selectivities (see scheme). Linear aliphatic alcohols are synthesized under reaction conditions typically used in industrial hydroformylations.


C-C Coupling

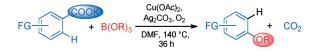
B. Song, T. Knauber,

L. J. Gooßen* _____ 2954 – 2958

Decarboxylative Cross-Coupling of Mesylates Catalyzed by Copper/Palladium Systems with Customized Imidazolyl Phosphine Ligands

The activation of the inert C-O bonds in mesylates through the use of a new class of imidazolyl phosphines allows the decarboxylative coupling of aryl mesylates as well as polysubstituted alkenyl mesy-

lates. Variation of the ligands leads to two complementary methods providing the corresponding biaryls and polysubstituted olefins in good yields.


C-H Activation

S. Bhadra, W. I. Dzik,

L. J. Gooßen* _____ 2959 – 2962

Synthesis of Aryl Ethers from Benzoates through Carboxylate-Directed C—H-Activating Alkoxylation with Concomitant Protodecarboxylation

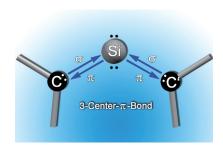
One in, one out: In the presence of a copper/silver bimetallic catalyst system, aromatic carboxylate salts undergo *ortho* C—H alkoxylation with concomitant loss of the carboxylate directing group in a proto-

decarboxylation step (see scheme, FG = functional group). This process provides a convenient synthetic access to the important class of aromatic ethers from widely available carboxylic acids.

Low-Valent Silicon

K. C. Mondal, H. W. Roesky,*

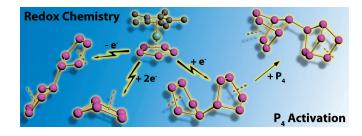
M. C. Schwarzer, G. Frenking,*


B. Niepötter, H. Wolf, R. Herbst-Irmer,

D. Stalke* _____ 2963 - 2967

A Stable Singlet Biradicaloid Siladicarbene: (L:)₂Si

A trapped silicon atom: The compound (L:)₂Si with low-valent silicon was synthesized from its dichloride biradical precursor (L:)₂SiCl₂ by reduction with KC₈. Theoretical analysis suggest that there are two donor–acceptor σ bonds L: \rightarrow Si \leftarrow :L. There is one σ lone-pair orbital at Si and one π orbital which features significant π -back-donation L: \leftarrow Si \rightarrow :L giving short Si \leftarrow C bonds.


No transition metals are necessary in the reaction of in situ generated arynes with nitrosoarenes to give substituted carbazoles. Depending on the fluoride source and the solvent, either N-arylated carbazoles or NH-carbazoles are obtained (see

scheme; DME = dimethoxyethane, OTf= trifluoromethanesulfonate). In these cascades a C—C and one or two C—N bonds are formed. The reactions are easy to conduct and proceed under mild conditions.

Heterocycles

S. Chakrabarty, I. Chatterjee, L. Tebben,
A. Studer* ______ 2968 – 2971

Reactions of Arynes with Nitrosoarenes— An Approach to Substituted Carbazoles

Pentaphosphaferrocene redox chemistry: Unprecedented dianionic and P—P coupled and monomeric products are obtained by the reduction of pentaphosphaferrocene with KH or K metal, whereas

by oxidation a P–P coupled P_{10}^{2+} ligand coordinated to two Cp*Fe units is obtained. The redox behavior clearly distinguishes pentaphosphaferrocene from its organometallic relative, ferrocene.

Small-Molecule Activation

Ferrocene and Pentaphosphaferrocene: A Comparative Study Regarding Redox Chemistry

Take two: By employing two equivalents of an aldehyde in an asymmetric organocatalytic domino reaction, the nucleophilic enamine intermediate is also converted into the corresponding iminium species through oxidation with *o*-iodoxy-

benzoic acid. Thus, polyfunctionalized cyclohexene derivatives are formed from two simple starting materials in good yields and stereoselectivities (see scheme; Bn = benzyl, EWG = electronwithdrawing group).

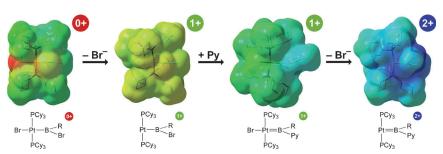
Asymmetric Synthesis

X. Zeng, Q. Ni, G. Raabe,
D. Enders* _______ 2977 – 2980

A Branched Domino Reaction: Asymmetric Organocatalytic Two-Component Four-Step Synthesis of Polyfunctionalized Cyclohexene Derivatives

Low-Coordinate Complexes

H. Braunschweig,* P. Brenner,

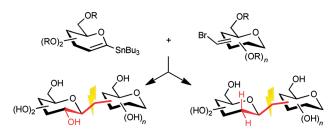

R. D. Dewhurst, J. O. C. Jimenez-Halla,

T. Kupfer, D. Rais,

K. Uttinger _____ 2981 – 2984

Maximizing Coordinative and Electronic Unsaturation: Three-Coordinate Dicationic Platinum Complexes

Halide abstraction from cationic basestabilized borylene complexes led to extremely electronically and coordinatively unsaturated platinum complexes. The formally 14-electron borylene complexes show no agostic interactions with the phosphine ligands, and only small Lewis donor ligands could be added to the Pt center.


Carbohydrate Mimics

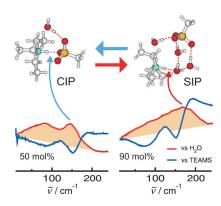
D. C. Koester, E. Kriemen,

D. B. Werz* _____ 2985 - 2989

Flexible Synthesis of 2-Deoxy-C-Glycosides and $(1\rightarrow 2)$ -, $(1\rightarrow 3)$ -, and $(1\rightarrow 4)$ -Linked C-Glycosides

Link! Two, three, four! A rapid and flexible synthesis of native $(1 \rightarrow n)$ -linked *C*-disaccharides (n=2, 3, 4; left) is possible. The configuration of the pseudoanomeric carbon was readily established by an

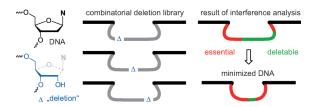
epoxidation/ring-opening sequence. The synthesis of $(1 \rightarrow n)$ -linked 2-deoxy-C-disaccharides (right) with high diastereose-lectivity follows an even shorter route.


Ion Pairs

P. Stange, K. Fumino,

R. Ludwig* _____ 2990 - 2994

Ion Speciation of Protic Ionic Liquids in Water: Transition from Contact to Solvent-Separated Ion Pairs The fab four: Far-infrared difference spectra and DFT-calculated properties for mixtures of protic ionic liquids (PILs) and water clearly indicate that a minimum of four water molecules are needed to transfer contact (CIPs) into solvent-separated (SIPs) ion pairs. SIPs are favored over CIPs owing to additional H-bonds and cooperative effects. This enthalpic advantage overcompensates for the entropic penalty of separation by water.



Nucleic Acid Chemistry

B. Samanta, C. Höbartner* - 2995 - 2999

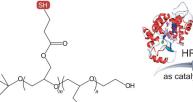
Combinatorial Nucleoside-Deletion-Scanning Mutagenesis of Functional DNA

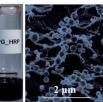
Compact and informative: Individual nucleosides are statistically mutated by replacement with a non-nucleosidic spacer unit Δ that encodes the "deletion" in a single DNA library. This efficient

mutagenesis approach enables minimization of functional DNA, identifying essential nucleotides, as demonstrated for two nucleic-acid ligating deoxyribozymes.

Medical knowledge is our fascination. Together with our associates in research, science and education we help millions of people all over the world.

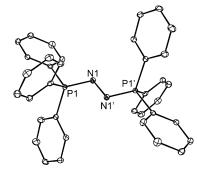
We are committed to improving medical treatment. Because health matters!


Hydrogels


S. Singh, F. Topuz, K. Hahn, K. Albrecht, _____ 3000 – 3003

Embedding of Active Proteins and Living Cells in Redox-Sensitive Hydrogels and Nanogels through Enzymatic Cross-Linking

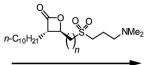
Horseradish peroxidase (HRP) can be used for the enzymatic cross-linking of thiol-functionalized polymers under mild conditions to form hydrogels and nanogels without the need for added H₂O₂.

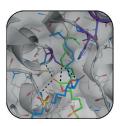

Cells can be embedded in the hydrogels and proteins can be entrapped and released from the nanogels. These gels are fully degradable under mild and cytocompatible reductive conditions.

Dinitrogen Species

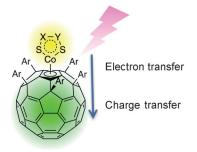
N. Holzmann, D. Dange, C. Jones,* G. Frenking* _____ 3004-3008

Dinitrogen as Double Lewis Acid: Structure and Bonding of Triphenylphosphinazine N₂(PPh₃)₂ Making Ns meet: Triphenylphosphinazine N2(PPh3)2 is a donor-acceptor complex between nitrogen in the highly excited ${}^1\Gamma_{\mu}$ state and two anti-periplanar coordinated phosphine ligands (see structure). Although the dissociation into N₂+2 PPh₃ is calculated to be exergonic by 75 kcal mol⁻¹, the compound is kinetically very stable as a result of the very large Lewis acidity of N_2 in the excited ${}^1\Gamma_{\sigma}$ state.


Enzyme Inhibitors


M. Gersch, F. Gut, V. S. Korotkov, J. Lehmann, T. Böttcher, M. Rusch, C. Hedberg, H. Waldmann, G. Klebe, S. A. Sieber* ______ 3009 – 3014

The Mechanism of Caseinolytic Protease (ClpP) Inhibition


Catch me if you can: The ClpP protease mediates protein homeostasis and can be efficiently inhibited by β -lactones. A combination of molecular docking, mutagenesis, activity-based protein profiling, and kinetics studies now reveals the mechanism of ClpP inhibition. A hydrophobic pocket next to the active site allows binding of long aliphatic and aromatic residues. The preferred stereoisomer binds into the oxyanion hole.

C-H Activation

M. Maruyama, M. König, D. M. Guldi,* E. Nakamura, Y. Matsuo* _ 3015-3018

Reactivity of a Metastable Cobalt(III) Trisulfide Complex: Multiple C-H Functionalization of p-Xylene and Disulfides to Afford Photofunctional **Cobalt Complexes**

Unprecedented reactivity of a metastable cobalt trisulfide complex has been observed, and several direct C-S bond formation reactions by C-H functionalization were developed. These reactions produced a series of photofunctional motifs of sulfur-rich cobalt complexes (see picture). The measured photophysical properties of these complexes suggest promising molecular designs for photocurrent generating materials.

What could be simpler than C_2 , a diatomic molecule that has the second strongest homonuclear bond? This molecule turns out to be a microcosm of the bonding issues that bother chemists, as is shown in this trialogue. Join the three authors in their lively debate, light a candle, as Faraday did, and see the excited states of C_2 !

And Finally

Chemical Bonding

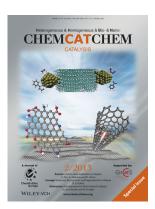
S. Shaik,* H. S. Rzepa,*
R. Hoffmann* ______ **3020 – 3033**

One Molecule, Two Atoms, Three Views, Four Bonds?

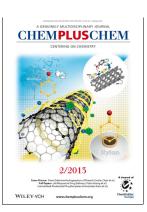
Supporting information is available on www.angewandte.org (see article for access details).

A video clip is available as Supporting Information on www.angewandte.org (see article for access details).

This article is available online free of charge (Open Access).



This article is accompanied by a cover picture (front or back cover, and inside or outside).


Check out these journals:

www.chemasianj.org

www.chemcatchem.org

www.chempluschem.org

www.chemviews.org

2637